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Abstract. The rapid development of cloud computing has attracted a diverse
migration of applications. Serverless computing, with its abstract resource man-
agement, on-demand billing, and dynamic scaling, has become a popular cloud
computing paradigm. X86 signifies traditional computility, while RISC-V sym-
bolizes newpotential.Making themost of existing traditional computing resources
while exploring the potential of new computility will be a key challenge. The x86
and RISC-V hybrid computility supply will continue for a long time. Task man-
agement under diverse instruction set architectures is a critical issue that needs
addressing in this evolving landscape. Current research predominantly concen-
trates on homogeneous instruction set clusters. In this paper, we propose RFaaS, a
function job scheduling methodology tailored for RISC-V + X86 heterogeneous
instruction set clusters, leveraging the OpenFaaS serverless computing platform.
We delve into the affinity traits of function jobs in RISC-V + X86 amalgamated
instruction set clusters and devise an affinity classifier alongside an architecture-
aware scheduling algorithm. Our methodology dissects scheduling decisions into
resource fulfillment and affinity alignment, underpinned by a meticulously crafted
update algorithm to uphold and refine job affinities. Experimental results show
that RFaaS can provide at least 3x performance improvement and 2.4x throughput
increase compared to existing solutions.

Keywords: Heterogeneous Clusters · Serverless Computing · Function
Scheduling · RISC-V

1 Introduction

The rapid development of cloud computing has attracted a diverse migration of appli-
cations. Serverless computing, known for its high level of abstraction in resource and
programming management, on-demand billing, and dynamic scaling, has become a
popular cloud computing paradigm. But with the processor architectures continue to
evolve, the trend toward heterogeneous clusters is becoming increasingly evident. Het-
erogeneous clusters [1], comprising a variety of hardware components, allow for greater
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flexibility and efficiency in handling a variety of workloads, not only bolster the devel-
opment and deployment aptitudes of cloud applications but also lay the groundwork for
performance enhancements. Nonetheless, the distinct operational attributes of disparate
hardware elements within heterogeneous clusters, coupled with the divergent tasks exe-
cuted on different hardware nodes, escalate the intricacy surrounding resource allocation
and scheduling determinations.

The X86 architecture represents traditional computility, has captured a significant
share of the server market (e.g., achieved 88% in 2023 [2]). RISC-V [3] is a fifth-
generationRISC (Reduced InstructionSetComputing) architecture, represents emerging
and exploratory computility, has garnered significant attention due to its open-source
nature, simplicity, modularity, and scalability, According to relevant agency forecasts,
it is expected that RISC-V processors will occupy nearly a quarter of the global market
share by 2030. In the foreseeable future, fully utilizing traditional computing resources
while exploring the potential of new computility will be a key challenge. Therefore,
X86 and RISC-V hybrid computing offerings will continue for a long time. In this trend,
exploring and improving taskmanagementmechanisms under heterogeneous instruction
set architectures has become a difficult problem that we must solve.

Existing works mainly focus on the homogeneous instruction set cluster, which can
effectively allocate resources and schedule the homogeneous instruction set, but lacks
the analysis on the impact of the heterogeneous instruction set [4],cannot exploited the
characteristics of different instruction set clusters. This may result in poor execution
performance and thus violating the SLO (service level objective) of the job. For exam-
ple, OpenFaaS [5] is a popular Serverless framework, but has hardware inawareness
shortcomings which may lead to latency sensitive functions being deployed on weaker
hardware, and scheduling policy limitations.

In this paper, we will explore the function job scheduling problem of heterogeneous
instruction set cluster based on X86 + RISC-V. This hardware combination selection
aims to show how cross-node heterogeneity and intra-node heterogeneity should work
together efficiently in concrete practice, and provide examples for heterogeneous com-
puting research on representative hardware platforms. However, it is not easy to achieve,
mainly due to the following challenges: Firstly, the computing efficiency and comput-
ing characteristics of heterogeneous cluster based on X86 + RISC-V are significantly
different from those of traditional cluster, so it is necessary to profile it to obtain rich
computing characteristics; Secondly, how to design an efficient scheduling algorithm
according to the computing power characteristics of heterogeneous clusters to improve
the utilization rate of computing power resources of heterogeneous clusters?

To address challenges above, our main contributions are as follows:

• We analyze the deployment problems and execution characteristics of jobs on RISC-
V + X86 clusters, and profile the functional job characteristics of heterogeneous
instruction sets.

• We design RFaaS, a function job scheduling method for RISC-V + X86 hetero-
geneous instruction set clusters, aimed at improving throughput while ensuring job
execution times.
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• We implement the prototype system of RFaaS, and evaluate its performance. Exper-
imental results show that RFaaS can provide at least 3x performance improvement
and a 2.4x throughput increase compared to existing solutions.

2 Background and Motivation

X86 is a traditional architecture with a Complex Instruction Set Computing (CISC)
design, is known for its widespread use in personal computers and servers. In contrast,
RISC-V is an emerging open-source architecture following a Reduced Instruction Set
Computing (RISC) approach, offers simplicity and flexibility. One significant difference
in function execution lies in the complexity of instruction sets: X86’s CISC design allows
for more complex instructions per operation, while RISC-V’s RISC design favors a
simpler and more streamlined approach to function execution.

To explore the relationships between different functions in RISC-V + X86 het-
erogeneous cluster scenarios and enhance the scheduling efficiency of heterogeneous
instruction set clusters, we analyzed the characteristics of function tasks for two archi-
tectures. We selected some of the most popular current processor-level benchmarks
(such as microbench [6], ServerBench [7], DeathStarBench [8], FunctionBench [9]) to
test machines in both architectures. Combined with the experiments of Zorun et al. [10].
The test environment configuration is the same as in Sect. 4.2.

Figure 1 shows the results of a computationally structured microbench test, the
Performance of RISC-V is low, with almost all functions performing less than half
as well as on X86. The reason for the above results is mainly due to the differences
in processor levels. It can be concluded that existing RISC-V processors still lack the
same performance as mainstream cloud vendors’ processors, showing disadvantages in
compute-intensive tasks.

Fig. 1. Computational benchmark compares two architectures

In order to explore suitable tasks and fully leverage the advantages of RISC-V archi-
tecture, we make a more detailed exploration of the above benchmark. The first is that
because RISC-V has simple instruction set makes context switching and interrupt han-
dling more efficient, it may have an advantage when making operations with heavy
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system calls. The experimental results in Fig. 2 show that, almost all system calls show
better results on RISC-V than on X86. That is because although X86 processors have
moremature hardware optimization technology, but if the function involves system calls,
the execution of the function will not only occur on the CPU, but will involve interrupts,
context switches, IO waiting and other scenarios, and in these scenarios, RISC-V archi-
tecture has some unique designs (for example, simple instruction set of RISC-V makes
context switching and interrupt handling more efficient), so RISC-V architecture may
have advantageswhen performing operationswith a large number of system calls. There-
fore, according to the characteristics of RISC-V+X86 heterogeneous cluster, designing
a suitable function job scheduling method has certain research value.

Fig. 2. Comparison of common system execution time between two architectures

3 RFaaS Design

3.1 Overview

The basic design idea of RFaaS is to optimize system performance by using the fea-
tures and characteristics of different instruction set machines (such as system call time)
combined with characteristics such as job affinity.

Figure 3 shows the overall design architecture of RFaaS.When a function is deployed
in a cluster, RFaaS will characterize a single run of the function in an offline manner,
record and maintain data from various dimensions during job execution ➊, and then
train and maintain a classification model based on the results ➋. For online services, job
requests that arrive at the gateway will enter classifier ➌. The classifier uses a trained
classification model to classify the requested function to obtain its affinity, and places
the job into the corresponding classification queue. The classifier will also dynamically
update the classification model based on its offline characterization results. When a
request enters the classification queue, it cannot determine its final deployment location
because the classifier cannot perceive the status of the cluster, especially the queuing
situation of the job. After passing through the classifier, the request will be sent to the
scheduler module ➍. The scheduler module will periodically synchronize the cluster
status ➎ and use heartbeat detection and other methods to check whether the service is
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Fig. 3. RFaaS system architecture

alive. Finally, combined with the final completion time and other information carried by
the job, the job will be sent to the queue maintained by the corresponding node ➏, and
the node will decide which job to run on its own ➐.

3.2 Affinity Classifier

Metric Selection: We selected a series of performance metrics through correlation
analysis, using Pearson [13], Kendall [14], and Spearman [15] correlation coefficients
to evaluate the correlation between the target placement node and variousmetrics. Higher
coefficients indicate stronger correlations. Table 1 shows the correlation scores between
the target placement node andmetrics under the three correlation analysismethods, based
on metrics with a correlation score greater than 0.1. We selected 10 highly correlated
metrics as inputs for the classification model.

Application Profile: We used tools like perf, sar, and strace to profile jobs. However,
not all collected metrics can be directly applied to the model. If the correlation between
metrics is low, it may lead to model overfitting, affecting generalization and accuracy.
On the other hand, high input dimensionality can prolong model training and prediction
time, increasing operational costs. Therefore, it is necessary to extract performance
metrics highly correlated with inherent characteristics.

Incremental Model: To continuously optimize and update the classification model for
optimal performance, we used online incremental learning [16]. Initially, we built a
small workload metric dataset and corresponding labels to train the predictor. During
execution, the predictor continuously expands the dataset by inserting new metrics and
deployment nodes. This allows the model to self-update, improving prediction accuracy
and handling dynamic changes effectively.

Model Selection: We summarized the characteristics of several popular incremental
machine learning models, such as IKNN [17], ISVR [18], and IMLP [19], and used
thesemodels to build the classificationmodel.We tested the accuracy results of k-nearest
neighbor (KNN), logistic regression (LR), random forest regression (RFR), support vec-
tor machine (SVR), and multilayer perceptron (MLP) predictors. The evaluation metrics
include Mean Absolute Error, Mean Squared Error, R2 (Coefficient of Determination),
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Table 1. Correlation Scores Between Target Placement Node and Metrics.

Metric Pearson
Coefficient

Kendall
Coefficient

Spearman
Coefficient

Branch Mispredictions 0.416 0.603 0.738

CPU Migrations 0.337 0.314 0.361

CPU Clock Speed 0.183 0.649 0.792

Page Faults 0.114 0.580 0.662

Context Switches 0.382 0.669 0.797

Branch Instructions 0.256 0.701 0.857

CPU Utilization 0.283 0.197 0.231

Disk IO 0.427 0.295 0.346

Network Bandwidth 0.431 0.438 0.566

System Call Time Ratio 0.965 0.866 0.944

Branch Mispredictions 0.416 0.603 0.738

CPU Migrations 0.337 0.314 0.361

and Explained Variance Score. Among these, RFR significantly outperformed the other
methods, achieving an accuracy as high as 99.8%. Therefore, we ultimately chose RFR
as the algorithm for the classification model.

3.3 Architecture Aware Gittins Priority Scheduling Algorithm

Analysis of Request Scheduling Problem: Due to resource heterogeneity, sensitivity
variations between requests and resources, and potential request concurrency, finding
an optimal scheduling scheme for timely requests is highly complex. This complexity
arises from the need to consider factors like resource heterogeneity, job sensitivity, node
preferences, and request timing. Overcoming these challenges requires an intelligent
scheduling algorithm and resource allocation strategy that maximizes cluster resource
usage while meeting job SLO.

The Multi-Architecture Cluster Function Scheduling (MA-CFS) problem is defined
as follows: Given the different architecture of server set {S1, S2, ..., Sm} and a variety of
different affinity function {f1, f2, ..., fn}. Each server has a different resource capacity,
and each function has different resource requirements. For the heterogeneous cluster
composed of these multi-architecture servers, it is required to accurately identify each
function and allocate resources reasonably in order to ensure the maximum degree of
job SLO.

MA-CFS Problem Modeling: The objective function of MA-CFS problem can be set
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as follows: min
∑F

i=1(di−bi)
F , where F represents the set of all requests, di represents the

time when the execution of the request i starts, and di represents the time when the
execution of the request i finishes.

This is a Linear Programming (LP) problem with many constraints. First of all, in
order to ensure the request latency requirements, time di must ensure that the request has
been completed no more than the requested deadline ei, so we can draw the following
constraints: 1 ≤ di ≤ ei,∀i ∈ F . For the start of each request execution time bi must
be less than the request has been completed time ei, so we can draw the following
constraints: 1 ≤ bi ≤ ei,∀i ∈ F . For each request, the start execution time bi must also
be less than the request completion time di, so the following constraints can be derived:
bi ≤ di,∀i ∈ F . We also define the two binary variables xtij and yij, x

t
ij indicates whether

job i is running on server j at time t, and yij indicates whether job i is running on server
j. The constraints related to these two variables and the relationship between them can
be obtained: xtij ∈ {0,1}, yij ∈ {0,1}. xtij ≤ yij,∀i ∈ F,∀j ∈ S,∀t = 1,2, ..., ei. To ensure
that any request i is processed by only one server j at the same time, the following
constraints can be obtained:

∑S
j=1 yij = 1,∀i ∈ F . For each server, it is necessary to

ensure that the sum of memory resource mj
i and CPU resource cji used by request i

allocated on the server at any time t does not exceed the maximum server resource Rj
mem

and Rj
cpu, so the following constraints can be obtained:

∑F
i=1

∑S
j=1 x

t
ij ·mj

i ≤ Rj
mem,∀i ∈

F,∀j ∈ S,∀t = 1,2, ..., ei,
∑F

i=1
∑S

j=1 x
t
ij · cji ≤ Rj

cpu,∀i ∈ F,∀j ∈ S,∀t = 1,2, ..., ei.

Architecture-Aware Gittins Priority Scheduling Algorithm, AGPSA: The
Architecture-Aware Gittins Priority Scheduling Algorithm (AGPSA) addresses the NP-
hard MA-CFS problem by minimizing execution and queuing times. The algorithm
schedules jobs without relying on precise duration estimates. When a request arrives,
the job classifier assesses its affinity based on job characteristics, and the most compat-
ible node is selected. If it’s the job’s first execution, the algorithm initializes the Gittins
weight to 1.0. The algorithm then checks if the node’s resources suffice; if so, the job
runs immediately. If not, the job is queued with priority based on its cut-off and queu-
ing times. Periodic checks determine if the job’s Gittins weight exceeds a threshold for
execution; otherwise, it waits.
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4 Evaluation

4.1 System Implementation

We implemented RFaaS based on the OpenFaaS [5] serverless computing platform
using approximately 4400 lines of Java code and 2000 lines of Python code. OpenFaaS
is an open source serverless computing platform that simplifies the process of function
deployment.

4.2 Experimental Setup

We employed two physical clusters, one based on X86 and the other on RISC-V archi-
tecture, as our experimental setups. Each node was equipped with 8 GBRAMand 32GB
storage. The processor frequencies of X86 machines and RISC-Vmachines are 2.5 GHz
and 1.5 GHz respectively. In order to ensure the fairness of the experimental results, we
reduced the frequency of X86 processors to the same as that of RISC-V machines. We
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selected test functions from FunctionBench [20] and DeathStarBench [8] benchmark
suites. Given the lack of a serverless platform tailored for RISC-V + X86 heteroge-
neous clusters, we adapted OpenFaaS, a server-agnostic platform, as a benchmark. To
showcase the effectiveness of our proposed scheme, we implemented variants of RFaaS
alongside OpenFaaS for comparison.

At present, there is no work to provide a serverless computing platform for RISC-V
+ X86 heterogeneous instruction set cluster, so we ported the existing server-unaware
computing platform OpenFaaS as a benchmarking scheme. In order to reflect the effec-
tiveness and advancement of the proposed scheme, we also implements variants of
RFaaS, RFaaS− and OpenFaaS.

4.3 RFaaS Component Evaluation

Classifier Effect Evaluation: We adjusted the input vector S described in formula (1),
set it as zero vector, and fed the modified input into different machine learning models,
thus obtaining each machine learning classification model of RFaaS after removing
the index of kernel state time, and denoting it as RFaaS-wo-sc. In addition, Since the
inherent execution characteristics of system calls inevitably lead to some redundancy
between the kernel mode time indicator and other indicators, such as disk I/O and
network bandwidth, this paper further evaluates the effect of removing disk I/O and
network bandwidth two indicators and three indicators. The resulting classifier versions
are denoted as RFaaS-wo-dn and RFaaS-wo-scdn.

Figure 4 illustrates the impact of excluding the kernel-state time measure on the
accuracy of different machine learning classifiers. The KNN and LR models saw accu-
racy drops of 14% and 12%, respectively, while the RFR model experienced only an
8% decrease. This decline is expected, given the high correlation coefficient (0.965)
of kernel-state time. KNN’s heavy reliance on local data structure weakens its spatial
recognition when a core feature is removed, and LR loses accuracy due to its dependence
on linear correlations. In contrast, RFR’s multi-decision tree strategy compensates for
missing key features, making it the most resilient. Additionally, the comparison between
RFaaS-wo-dn andRFaaS-wo-scdn indicates that kernel-state time, disk I/O, and network
bandwidth, though somewhat redundant, are not entirely independent, with kernel-state
time having a more significant effect on classifier performance.

Fig. 4. Classification accuracy under different machine learning models
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Scheduler Effectiveness Evaluation: Before evaluating scheduling algorithms, we
first evaluated the way machine learning algorithms are used to predict time directly
in existing work [16] to verify that “predictors of job execution times cannot make
accurate predictions.”

Fig. 5. Prediction of machine learning predictor

Figure 5 compares the prediction results of nine social network functions using
four machine learning models: RFR, KNN, LR, and SVR. Each model, trained on the
features listed in Table 1 and based on input size, is evaluated on both RISC-V and
x86 architectures. The box plots illustrate that, while the prediction time can effectively
indicate the optimal execution node for some functions (e.g., compose-post, upload-
text), it fails to do so for others (e.g., upload-creator, post-storage), particularly with the
RFR model, where classification errors range from 23% to 60%.

To evaluate the AGPSA scheduling algorithm, we integrated a classifier into Open-
FaaS to identify function affinity, leading to two OpenFaaS variants: OpenFaaS-RRLB
and OpenFaaS-FCFS, based on Round Robin Load Balancing (RRLB) and First Come
First Service (FCFS) algorithms, respectively.

4.4 Overall RFaaS Evaluation

Overall Job Completion Time Evaluation: Figure 6 shows a comparison of the job
completion time of all functions of RFaaS, RFaaS− and OpenFaaS solutions under three
different loads. These functions are all from the previously mentioned applications,
among which CP, UC, UUM and other functions with capital abbreviations are all com-
ponents of social network applications. CP, UT, UM, UUI, CAP, matmul, float, dd, json
belong to X86 affinity functions, UC, UUM, PS, UUT, UHT belong to RISC-V affinity
functions.

Figure 6(a) shows that RFaaS and RFaaS− outperform OpenFaaS significantly in
handling sparse workloads, reducing job completion times by at least half. This is due
to OpenFaaS’s inefficient classifier, which relies on Docker Swarm’s default polling
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(a) Sparse workload comparison

(b) Staged workload comparison

(c) Burst workload comparison

Fig. 6. Different solutions compare job completion times under three workloads

load balancing, leading to poor scheduling and inefficiency, especially when functions
with high affinity for x86 architecture are run on RISC-V nodes. Figure 6(b) reveals an
even greater performance advantage for RFaaS under staged workloads, as OpenFaaS’s
polling strategy increases scheduling errors and queue blocking, prolonging execution
times. However, RFaaS− starts to show misclassification under high loads, impacting
longer tasks like matrix multiplication. Figure 6(c) demonstrates that these issues are
more pronounced under burst workloads.

Overall Throughput Evaluation: Throughput is a key metric for platform capability.
This section compares the throughput of RFaaS, RFaaS−, and OpenFaaS under three
production loads. Figure 7(a) shows that RFaaS improves throughput by 3.54x, 3.64x,
and 3.85x over OpenFaaS, and by 1.04x, 1.15x, and 1.33x over RFaaS−. RFaaS achieves
higher throughput due to its job classifier and efficient scheduling algorithm, which
accurately identifies request affinity and avoids assigning jobs to slow nodes. In contrast,
RFaaS− lacks effective classification, leading to reduced scheduling accuracy under
heavy loads. Figure 7(b) illustrates that RFaaS improves throughput by 3.35x to 3.6x
compared to OpenFaaS across various SLO settings.
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(a) Throughput comparison of different solutions (b) Throughput comparison of different SLOs

Fig. 7. Throughput comparison

4.5 Results and Analysis

According to the complete evaluation of RFaaS, the performance of RFaaS and com-
parison methods is mainly measured by classifier accuracy, scheduling algorithm accu-
racy, component cost, job completion time and throughput. The following experimental
conclusions can be obtained:

(1) The technical selection of RFaaS in each component is the optimal solution, in which
the classifier can reach 99.7% accuracy, and can accurately identify the affinity of
the job; The designed scheduling algorithm can guarantee the scheduling success
rate of 63.6% even under a large number of sudden workloads. The importance of
the selected system call time ratio index is verified. The accuracy of classifiers that
removed this index decreased by up to 14%.

(2) RFaaS also fully guarantees the completion time of the job, regardless of the type of
load, RFaaS has shown far better performance than OpenFaaS, and can provide at
least 3 times the performance lead for each function; RFaaS also provides the largest
throughput increase, at least 2.4x, compared to existing OpenFaaS solutions.

5 Conclusion

Aiming at the problem of job deployment on RISC-V + X86 cluster and the charac-
teristics of job running on RISC-V + X86 cluster, in this paper,we designed a function
job scheduling method RFaaS for RISC-V + X86 heterogeneous instruction set cluster.
RFaaS includes two main components: a job affinity classifier based on system call time
ratios and an architecture-aware Gittins priority scheduling algorithm. Through com-
ponent testing and overall testing of RFaaS, it is verified that the job classifier and job
scheduler canmaximize throughput comparedwith existing solutionswhile guaranteeing
job execution time.
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